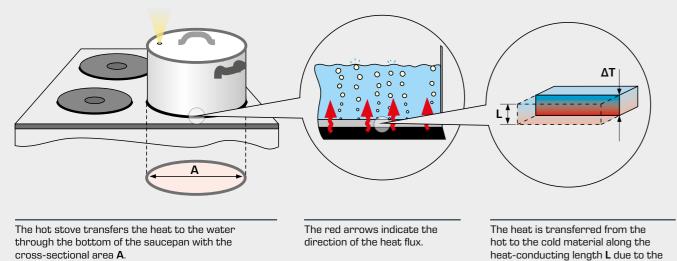
Basic knowledge Material-bound/non-material-bound heat transport

Material-bound heat transport


by conduction and convection

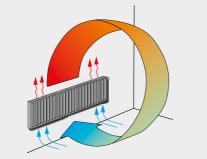
Conduction

In the case of thermal conduction, heat transport takes place through direct interaction between the molecules (e.g. molecule collisions) within a solid or a fluid at rest. A prerequisite for this is that there is a temperature difference within the substance or that substances of different temperatures come into direct contact with each other. All aggregate states allow this transfer mechanism.

The amount of heat transported depends on:

- the thermal conductivity λ of the material,
- the heat conducting length L,
- the heat transferring area A,
- the dwell time **t** and
- the temperature difference ΔT between the beginning and end of the thermal conductor

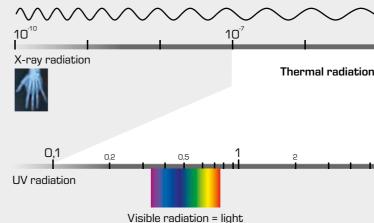
interaction of the molecules via the temperature difference ΔT .


Convection

Heat transport takes place in flowing liquids or gases by means of material movement, i.e. material transport. Where forced convection occurs, the flow is forced by external forces. Examples: a pump in a warm water heater, fans in a power pack or PC.

If the flow is caused by differences in density due to different temperatures within the fluid this is called free or natural convection. Examples: water movement when heated in a pot, by a foehn wind, the gulf stream, or a vent in a chimney.

Cold air is sucked in by the fan, cools the internal components and flows out again as heated air.


The air molecules warmed by the heater rise due to differences in density

Non-material-bound heat transport

by thermal radiation

Radiation

Energy transport through electromagnetic oscillation in a specific wavelength range. Any body with a temperature above zero Kelvin emits radiation known as thermal radiation.

Using a thermal imaging camera, it is possible to make thermal radiation visible: the thermal camera converts long-wave infrared radiation into visible radiation.

Material characteristics

Heat transfer coefficient α : a measure of how much heat is Overall heat transfer coefficient k: describes the overall heat transferred from a solid to a fluid or vice versa (convection) transfer between fluids separated by solids (convection and conduction)

Thermal conductivity λ : a measure of how well heat is transferred into a solid (conduction)

infrared radiation. Light radiation covers the wavelength range visible to the human eye. λinm 10⁻⁴ 10 Microwaves 10 100 50 λ in um IR radiation

Thermal radiation includes UV radiation, light radiation and

The best example of thermal radiation is the sun. One example of a technical application is a patio heater: electromagnetic oscillations are emitted by the heat source as thermal radiation in all directions. The portion of the thermal radiation directed upwards is reflected by the canopy.

Reflectance, absorbance and transmittance: a measure of the proportion of thermal radiation reflected, absorbed or transmitted to a body (radiation)