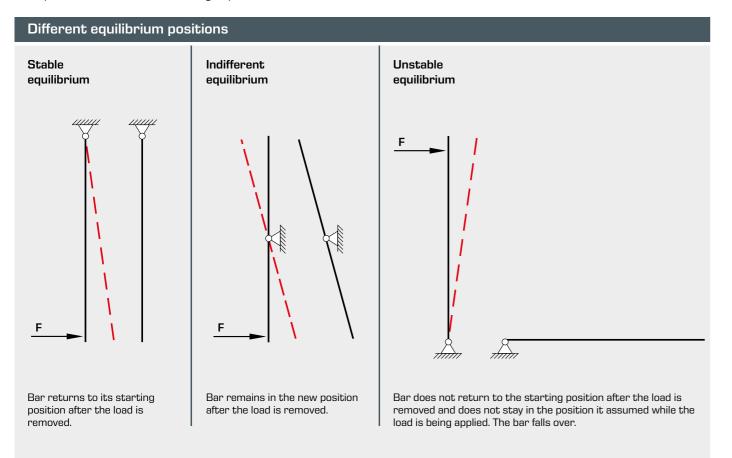
Basic knowledge Stability problem buckling

If slim and long components such as bars, beams and columns are subject to compressive stress owing to a force along the bar axis, these can end up in indifferent or unstable equilibrium positions. If the force **F** is less than the critical force F_{K} , also known as buckling force, the component is in a stable equilibrium position and there is a strength problem. If the force F

reaches the buckling force F_K of the bar, the bar suddenly starts to buckle. The components, thus, lose their ability to function. Buckling is usually a very sudden and abrupt process which causes large deformations.

Euler's buckling cases

The mathematician and physicist Leonhard Euler defined four typical buckling cases to calculate the buckling force. For each of these cases, there is a buckling length coefficient β that is used to determine the buckling length L_{K} .



F force

Stability in bars

Bars under pressure are a typical stability problem. Here, we investigate when a straight bar collapses. The critical buckling force F_K describes the smallest possible compressive force under which the bar buckles. The critical buckling stress σ_K is the stress that occurs at the critical buckling force F_{K} . The buckling force for pressure-loaded bars depends on the support

conditions, bending stiffness and geometry of the shape of the bar cross-section. Euler's four buckling cases are taken as the basis for the study of the bending stability of bars with constant bending stiffness.

2 11 Ť Case 1: Case 2: one bar end fixed, both bar ends pinned one bar end free buckling length buckling length coefficient $\beta = 2$ coefficient $\beta = 1$ buckling length $L_{K} = L \cdot \beta$ buckling length $L_{K} = L \cdot \beta$

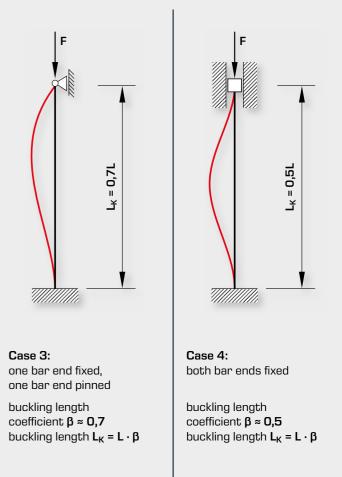
F force, L bar length, L_K buckling length, β buckling length coefficient

Determining the buckling force F_{K}

Determining the buckling stress σ_{K}

 $F_{\rm K} = \frac{\pi^2 \cdot E \cdot I}{L\nu^2}$

 F_{K} critical buckling force, L_{K} bar length, E elastic modulus, I axial second moment of the cross-section area



To determine the buckling stress we use the degree of slenderness λ as a material parameter and the moment of area radius i.

$$\lambda = \frac{\beta \cdot L}{i}$$
$$\sigma_{K} = \frac{\pi^{2} \cdot E}{\lambda^{2}}$$
$$i = \sqrt{\frac{1}{A}}$$

 σ_{K} buckling stress, **E** elastic modulus, λ degree of slenderness, β buckling length coefficient, L bar length, i moment of area radius, A cross-section area of the buckled bar, I second moment of area