Assembly exercises

Assembly process

In industrial manufacturing, the repeated fashioning of individual prefabricated components and assemblies into a finished product, unit or device is called assembly.

The entire assembly process comprises the assembly operations:

Joining (DIN 8593)

- ____ filling
- pressing on and impressing
- joining by moulding
- joining by forming
- welding
- soldering
- —∎ bonding
- textile joining

Handling (VDI 2860)

- retaining
 changing quantities
- ► dividing
- ▶ merging
- movina
 - turning
 - positioning
 - securing
 - holding
 - detaching
 - inspecting
 - checking

Design based on assembly requirements

An optimum design based on assembly requirements is characterised by the fact that only a few simple, unique or essential steps are required to assemble a product. Similarly, a parallel assembly of components should be planned at the design stage. If fully automated assembly is planned, this requires sophisticated solutions especially for the automated, safe grasping

of the workpiece. In design based on assembly requirements, the prerequisites and constraints have to be taken into account when building the product in assembly. Design based on assembly cannot be learned by theoretical teaching, but must be practised.

Special operations

cleaning

—∎ aligning

marking

Iubricating

Specifications for the design

Excerpt from the book, Grundlagen der Konstruktionslehre, Klaus-Jörg Conrad

When designing individual parts:

- design parts so that the ordering of the parts before assembly is not needed
- simplify position and orientation of the parts by external features, such as symmetrical shape
- simplify positioning by bevels, grooves, recesses, guides, etc.
- design joints so as to be easily accessible for tools and observation of the assembly process

When designing assemblies:

- structure product division with clear, testable assemblies in order to perform assembly operations with simple types of movement
- choose functional tolerances, but not too tight
- take note of disassembly and recycling in the design stage
 simplify or avoid calibration processes by means of good
- accessibility
- reduce number of individual components and joints
- design repetitive assemblies

Assembly exercises

The assembly exercises from GUNT are part of the GUNT-Practice Line. This series of units has been designed specifically for the areas of assembly, maintenance and repair (see also catalogue 2). Together with cutaway models, these units represent a practical addition to the field of engineering design. With our assembly exercises, we offer lecturers an interface between general, rather theoretical learning content and application-based, practical work.

Learning objectives	
Develop broad knowledge of assembly technology as a basis for the design of assemblies	Introduction to tec technical language
Familiarisation with machine elements and standard parts	Recognise assembl functions, describe
Read and understand technical documentation	Plan and execute as sequences
Familiarisation with typical tools and	Check and evaluate

Our instructional material for assembly exercises

The core of the teaching material is a complete set of drawings conforming to standards. In addition to the assembly drawing with parts list, you will find all manufacturing drawings of the individual parts. So you are able to produce your own parts, or have them manufactured for you.

Multimedia instructional material for MT 120 assembly exercise

GUNT attaches great importance to innovative, state-of-the art solutions and modern ways of imparting knowledge in the preparation of instructional material.

chnical terms and

lies, understand systems ssembly steps and

e work results

